INTRODUCTION

TO

LINEAR

ALGEBRA

Fifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/linearalgebra

web.mit.edu/18.06

video lectures: ocw.mit.edu

math.mit.edu/~gs

www.wellesleycambridge.com

email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press

Box 812060

Wellesley, Massachusetts 02482

Problem Set 1.1, page 8

- **1** The combinations give (a) a line in \mathbb{R}^3 (b) a plane in \mathbb{R}^3 (c) all of \mathbb{R}^3 .
- **2** v + w = (2,3) and v w = (6,-1) will be the diagonals of the parallelogram with v and w as two sides going out from (0,0).
- **3** This problem gives the diagonals v + w and v w of the parallelogram and asks for the sides: The opposite of Problem 2. In this example v = (3,3) and w = (2,-2).
- **4** 3v + w = (7,5) and cv + dw = (2c + d, c + 2d).
- 5 u+v=(-2,3,1) and u+v+w=(0,0,0) and 2u+2v+w=(add first answers)=(-2,3,1). The vectors u,v,w are in the same plane because a combination gives (0,0,0). Stated another way: u=-v-w is in the plane of v and w.
- **6** The components of every $c\mathbf{v} + d\mathbf{w}$ add to zero because the components of \mathbf{v} and of \mathbf{w} add to zero. c = 3 and d = 9 give (3, 3, -6). There is no solution to $c\mathbf{v} + d\mathbf{w} = (3, 3, 6)$ because 3 + 3 + 6 is not zero.
- 7 The nine combinations c(2,1) + d(0,1) with c = 0, 1, 2 and d = (0,1,2) will lie on a lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.
- **8** The other diagonal is v w (or else w v). Adding diagonals gives 2v (or 2w).
- **9** The fourth corner can be (4,4) or (4,0) or (-2,2). Three possible parallelograms!
- **10** i j = (1, 1, 0) is in the base (x-y plane). i + j + k = (1, 1, 1) is the opposite corner from (0, 0, 0). Points in the cube have $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.
- **11** Four more corners (1,1,0),(1,0,1),(0,1,1),(1,1,1). The center point is $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$. Centers of faces are $(\frac{1}{2},\frac{1}{2},0),(\frac{1}{2},\frac{1}{2},1)$ and $(0,\frac{1}{2},\frac{1}{2}),(1,\frac{1}{2},\frac{1}{2})$ and $(\frac{1}{2},0,\frac{1}{2}),(\frac{1}{2},1,\frac{1}{2})$.
- **12** The combinations of i = (1, 0, 0) and i + j = (1, 1, 0) fill the xy plane in xyz space.
- **13** Sum = zero vector. Sum = -2:00 vector = 8:00 vector. 2:00 is 30° from horizontal = $(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}) = (\sqrt{3}/2, 1/2)$.
- **14** Moving the origin to 6:00 adds j = (0,1) to every vector. So the sum of twelve vectors changes from $\mathbf{0}$ to 12j = (0,12).

15 The point $\frac{3}{4}v + \frac{1}{4}w$ is three-fourths of the way to v starting from w. The vector $\frac{1}{4}v + \frac{1}{4}w$ is halfway to $u = \frac{1}{2}v + \frac{1}{2}w$. The vector v + w is 2u (the far corner of the parallelogram).

- **16** All combinations with c + d = 1 are on the line that passes through v and w. The point V = -v + 2w is on that line but it is beyond w.
- 17 All vectors cv + cw are on the line passing through (0,0) and $u = \frac{1}{2}v + \frac{1}{2}w$. That line continues out beyond v + w and back beyond (0,0). With $c \ge 0$, half of this line is removed, leaving a ray that starts at (0,0).
- **18** The combinations $c\boldsymbol{v} + d\boldsymbol{w}$ with $0 \le c \le 1$ and $0 \le d \le 1$ fill the parallelogram with sides \boldsymbol{v} and \boldsymbol{w} . For example, if $\boldsymbol{v} = (1,0)$ and $\boldsymbol{w} = (0,1)$ then $c\boldsymbol{v} + d\boldsymbol{w}$ fills the unit square. But when $\boldsymbol{v} = (a,0)$ and $\boldsymbol{w} = (b,0)$ these combinations only fill a segment of a line.
- 19 With $c \ge 0$ and $d \ge 0$ we get the infinite "cone" or "wedge" between v and w. For example, if v = (1,0) and w = (0,1), then the cone is the whole quadrant $x \ge 0$, $y \ge 0$. Question: What if w = -v? The cone opens to a half-space. But the combinations of v = (1,0) and w = (-1,0) only fill a line.
- **20** (a) $\frac{1}{3}u + \frac{1}{3}v + \frac{1}{3}w$ is the center of the triangle between u, v and w; $\frac{1}{2}u + \frac{1}{2}w$ lies between u and w (b) To fill the triangle keep $c \ge 0$, $d \ge 0$, $e \ge 0$, and c + d + e = 1.
- 21 The sum is (v-u)+(w-v)+(u-w)= zero vector. Those three sides of a triangle are in the same plane!
- **22** The vector $\frac{1}{2}(u+v+w)$ is *outside* the pyramid because $c+d+e=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}>1$.
- **23** All vectors are combinations of u, v, w as drawn (not in the same plane). Start by seeing that cu + dv fills a plane, then adding ew fills all of \mathbb{R}^3 .
- **24** The combinations of u and v fill one plane. The combinations of v and w fill another plane. Those planes meet in a *line*: only the vectors cv are in both planes.
- **25** (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose u and v in different directions. A combination like w = u + v is in the same plane.

26 Two equations come from the two components: c + 3d = 14 and 2c + d = 8. The solution is c = 2 and d = 4. Then 2(1, 2) + 4(3, 1) = (14, 8).

- **27** A four-dimensional cube has $2^4 = 16$ corners and $2 \cdot 4 = 8$ three-dimensional faces and 24 two-dimensional faces and 32 edges in Worked Example **2.4** A.
- **28** There are **6** unknown numbers $v_1, v_2, v_3, w_1, w_2, w_3$. The six equations come from the components of $\boldsymbol{v} + \boldsymbol{w} = (4, 5, 6)$ and $\boldsymbol{v} \boldsymbol{w} = (2, 5, 8)$. Add to find $2\boldsymbol{v} = (6, 10, 14)$ so $\boldsymbol{v} = (3, 5, 7)$ and $\boldsymbol{w} = (1, 0, -1)$.
- 29 Two combinations out of infinitely many that produce b = (0,1) are -2u + v and $\frac{1}{2}w \frac{1}{2}v$. No, three vectors u, v, w in the x-y plane could fail to produce b if all three lie on a line that does not contain b. Yes, if one combination produces b then two (and infinitely many) combinations will produce b. This is true even if u = 0; the combinations can have different cu.
- **30** The combinations of v and w fill the plane unless v and w lie on the same line through (0,0). Four vectors whose combinations fill 4-dimensional space: one example is the "standard basis" (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).
- **31** The equations $c\mathbf{u} + d\mathbf{v} + e\mathbf{w} = \mathbf{b}$ are

$$2c \quad -d = 1$$
 So $d = 2e$ $c = 3/4$
 $-c + 2d \quad -e = 0$ then $c = 3e$ $d = 2/4$
 $-d + 2e = 0$ then $4e = 1$ $e = 1/4$

Problem Set 1.2, page 18

- 1 $u \cdot v = -2.4 + 2.4 = 0$, $u \cdot w = -.6 + 1.6 = 1$, $u \cdot (v + w) = u \cdot v + u \cdot w = 0 + 1$, $w \cdot v = 4 6 = -2 = v \cdot w$.
- 2 $\|u\| = 1$ and $\|v\| = 5$ and $\|w\| = \sqrt{5}$. Then $|u \cdot v| = 0 < (1)(5)$ and $|v \cdot w| = 10 < 5\sqrt{5}$, confirming the Schwarz inequality.

3 Unit vectors $\boldsymbol{v}/\|\boldsymbol{v}\| = (\frac{4}{5}, \frac{3}{5}) = (0.8, 0.6)$. The vectors $\boldsymbol{w}, (2, -1)$, and $-\boldsymbol{w}$ make $0^{\circ}, 90^{\circ}, 180^{\circ}$ angles with \boldsymbol{w} and $\boldsymbol{w}/\|\boldsymbol{w}\| = (1/\sqrt{5}, 2/\sqrt{5})$. The cosine of θ is $\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|} \cdot \frac{\boldsymbol{w}}{\|\boldsymbol{v}\|} = 10/5\sqrt{5}$.

- $4 \text{ (a) } \boldsymbol{v} \cdot (-\boldsymbol{v}) = -1 \qquad \text{(b) } (\boldsymbol{v} + \boldsymbol{w}) \cdot (\boldsymbol{v} \boldsymbol{w}) = \boldsymbol{v} \cdot \boldsymbol{v} + \boldsymbol{w} \cdot \boldsymbol{v} \boldsymbol{v} \cdot \boldsymbol{w} \boldsymbol{w} \cdot \boldsymbol{w} = 1 + () () 1 = 0 \text{ so } \theta = 90^{\circ} \text{ (notice } \boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{w} \cdot \boldsymbol{v}) \qquad \text{(c) } (\boldsymbol{v} 2\boldsymbol{w}) \cdot (\boldsymbol{v} + 2\boldsymbol{w}) = \boldsymbol{v} \cdot \boldsymbol{v} 4\boldsymbol{w} \cdot \boldsymbol{w} = 1 4 = -3.$
- 5 $u_1 = v/||v|| = (1,3)/\sqrt{10}$ and $u_2 = w/||w|| = (2,1,2)/3$. $U_1 = (3,-1)/\sqrt{10}$ is perpendicular to u_1 (and so is $(-3,1)/\sqrt{10}$). U_2 could be $(1,-2,0)/\sqrt{5}$: There is a whole plane of vectors perpendicular to u_2 , and a whole circle of unit vectors in that plane.
- **6** All vectors w = (c, 2c) are perpendicular to v. They lie on a line. All vectors (x, y, z) with x + y + z = 0 lie on a *plane*. All vectors perpendicular to (1, 1, 1) and (1, 2, 3) lie on a *line* in 3-dimensional space.
- **7** (a) $\cos \theta = \mathbf{v} \cdot \mathbf{w} / \|\mathbf{v}\| \|\mathbf{w}\| = 1/(2)(1)$ so $\theta = 60^{\circ}$ or $\pi/3$ radians (b) $\cos \theta = 0$ so $\theta = 90^{\circ}$ or $\pi/2$ radians (c) $\cos \theta = 2/(2)(2) = 1/2$ so $\theta = 60^{\circ}$ or $\pi/3$ (d) $\cos \theta = -1/\sqrt{2}$ so $\theta = 135^{\circ}$ or $3\pi/4$.
- 8 (a) False: ${\boldsymbol v}$ and ${\boldsymbol w}$ are any vectors in the plane perpendicular to ${\boldsymbol u}$ (b) True: ${\boldsymbol u} \cdot ({\boldsymbol v}+2{\boldsymbol w}) = {\boldsymbol u} \cdot {\boldsymbol v} + 2{\boldsymbol u} \cdot {\boldsymbol w} = 0$ (c) True, $\|{\boldsymbol u}-{\boldsymbol v}\|^2 = ({\boldsymbol u}-{\boldsymbol v}) \cdot ({\boldsymbol u}-{\boldsymbol v})$ splits into ${\boldsymbol u} \cdot {\boldsymbol u} + {\boldsymbol v} \cdot {\boldsymbol v} = {\boldsymbol 2}$ when ${\boldsymbol u} \cdot {\boldsymbol v} = {\boldsymbol v} \cdot {\boldsymbol u} = 0$.
- **9** If $v_2w_2/v_1w_1=-1$ then $v_2w_2=-v_1w_1$ or $v_1w_1+v_2w_2=\boldsymbol{v}\cdot\boldsymbol{w}=0$: perpendicular! The vectors (1,4) and $(1,-\frac{1}{4})$ are perpendicular.
- **10** Slopes 2/1 and -1/2 multiply to give -1: then $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ and the vectors (the directions) are perpendicular.
- 11 $\boldsymbol{v} \cdot \boldsymbol{w} < 0$ means angle $> 90^{\circ}$; these \boldsymbol{w} 's fill half of 3-dimensional space.
- 12 (1,1) perpendicular to (1,5)-c(1,1) if $(1,1)\cdot(1,5)-c(1,1)\cdot(1,1)=6-2c=0$ or $c=3; v\cdot(w-cv)=0$ if $c=v\cdot w/v\cdot v$. Subtracting cv is the key to constructing a perpendicular vector.

13 The plane perpendicular to (1,0,1) contains all vectors (c,d,-c). In that plane, $\mathbf{v}=(1,0,-1)$ and $\mathbf{w}=(0,1,0)$ are perpendicular.

- **14** One possibility among many: u = (1, -1, 0, 0), v = (0, 0, 1, -1), w = (1, 1, -1, -1) and (1, 1, 1, 1) are perpendicular to each other. "We can rotate those u, v, w in their 3D hyperplane and they will stay perpendicular."
- **15** $\frac{1}{2}(x+y) = (2+8)/2 = 5$ and 5 > 4; $\cos \theta = 2\sqrt{16}/\sqrt{10}\sqrt{10} = 8/10$.
- **16** $\|\boldsymbol{v}\|^2 = 1 + 1 + \dots + 1 = 9$ so $\|\boldsymbol{v}\| = 3$; $\boldsymbol{u} = \boldsymbol{v}/3 = (\frac{1}{3}, \dots, \frac{1}{3})$ is a unit vector in 9D; $\boldsymbol{w} = (1, -1, 0, \dots, 0)/\sqrt{2}$ is a unit vector in the 8D hyperplane perpendicular to \boldsymbol{v} .
- **17** $\cos \alpha = 1/\sqrt{2}$, $\cos \beta = 0$, $\cos \gamma = -1/\sqrt{2}$. For any vector $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ the cosines with (1, 0, 0) and (0, 0, 1) are $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = (v_1^2 + v_2^2 + v_3^2)/\|\mathbf{v}\|^2 = 1$.
- **18** $\|\boldsymbol{v}\|^2 = 4^2 + 2^2 = 20$ and $\|\boldsymbol{w}\|^2 = (-1)^2 + 2^2 = 5$. Pythagoras is $\|(3,4)\|^2 = 25 = 20 + 5$ for the length of the hypotenuse $\boldsymbol{v} + \boldsymbol{w} = (3,4)$.
- **19** Start from the rules (1), (2), (3) for $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$ and $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$ and $(c\mathbf{v}) \cdot \mathbf{w}$. Use rule (2) for $(\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) = (\mathbf{v} + \mathbf{w}) \cdot \mathbf{v} + (\mathbf{v} + \mathbf{w}) \cdot \mathbf{w}$. By rule (1) this is $\mathbf{v} \cdot (\mathbf{v} + \mathbf{w}) + \mathbf{w} \cdot (\mathbf{v} + \mathbf{w})$. Rule (2) again gives $\mathbf{v} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{v} + 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$. Notice $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$! The main point is to feel free to open up parentheses.
- **20** We know that $(\boldsymbol{v} \boldsymbol{w}) \cdot (\boldsymbol{v} \boldsymbol{w}) = \boldsymbol{v} \cdot \boldsymbol{v} 2\boldsymbol{v} \cdot \boldsymbol{w} + \boldsymbol{w} \cdot \boldsymbol{w}$. The Law of Cosines writes $\|\boldsymbol{v}\| \|\boldsymbol{w}\| \cos \theta$ for $\boldsymbol{v} \cdot \boldsymbol{w}$. Here θ is the angle between \boldsymbol{v} and \boldsymbol{w} . When $\theta < 90^\circ$ this $\boldsymbol{v} \cdot \boldsymbol{w}$ is positive, so in this case $\boldsymbol{v} \cdot \boldsymbol{v} + \boldsymbol{w} \cdot \boldsymbol{w}$ is larger than $\|\boldsymbol{v} \boldsymbol{w}\|^2$.

Pythagoras changes from equality $a^2+b^2=c^2$ to inequality when $\theta < 90^\circ$ or $\theta > 90^\circ$.

- **21** $2v \cdot w \le 2||v|||w||$ leads to $||v+w||^2 = v \cdot v + 2v \cdot w + w \cdot w \le ||v||^2 + 2||v|||w|| + ||w||^2$. This is $(||v|| + ||w||)^2$. Taking square roots gives $||v+w|| \le ||v|| + ||w||$.
- **22** $v_1^2 w_1^2 + 2v_1 w_1 v_2 w_2 + v_2^2 w_2^2 \le v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2$ is true (cancel 4 terms) because the difference is $v_1^2 w_2^2 + v_2^2 w_1^2 2v_1 w_1 v_2 w_2$ which is $(v_1 w_2 v_2 w_1)^2 \ge 0$.
- 23 $\cos \beta = w_1/\|\boldsymbol{w}\|$ and $\sin \beta = w_2/\|\boldsymbol{w}\|$. Then $\cos(\beta a) = \cos \beta \cos \alpha + \sin \beta \sin \alpha = v_1w_1/\|\boldsymbol{v}\|\|\boldsymbol{w}\| + v_2w_2/\|\boldsymbol{v}\|\|\boldsymbol{w}\| = \boldsymbol{v} \cdot \boldsymbol{w}/\|\boldsymbol{v}\|\|\boldsymbol{w}\|$. This is $\cos \theta$ because $\beta \alpha = \theta$.

24 Example 6 gives $|u_1||U_1| \le \frac{1}{2}(u_1^2 + U_1^2)$ and $|u_2||U_2| \le \frac{1}{2}(u_2^2 + U_2^2)$. The whole line becomes $.96 \le (.6)(.8) + (.8)(.6) \le \frac{1}{2}(.6^2 + .8^2) + \frac{1}{2}(.8^2 + .6^2) = 1$. True: .96 < 1.

- **25** The cosine of θ is $x/\sqrt{x^2+y^2}$, near side over hypotenuse. Then $|\cos\theta|^2$ is not greater than 1: $x^2/(x^2+y^2) \le 1$.
- **26** The vectors $\mathbf{w}=(x,y)$ with $(1,2)\cdot\mathbf{w}=x+2y=5$ lie on a line in the xy plane. The shortest \mathbf{w} on that line is (1,2). (The Schwarz inequality $\|\mathbf{w}\| \geq \mathbf{v}\cdot\mathbf{w}/\|\mathbf{v}\| = \sqrt{5}$ is an equality when $\cos\theta=0$ and $\mathbf{w}=(1,2)$ and $\|\mathbf{w}\|=\sqrt{5}$.)
- 27 The length $\|\boldsymbol{v} \boldsymbol{w}\|$ is between 2 and 8 (triangle inequality when $\|\boldsymbol{v}\| = 5$ and $\|\boldsymbol{w}\| = 3$). The dot product $\boldsymbol{v} \cdot \boldsymbol{w}$ is between -15 and 15 by the Schwarz inequality.
- 28 Three vectors in the plane could make angles greater than 90° with each other: for example (1,0), (-1,4), (-1,-4). Four vectors could *not* do this (360°) total angle). How many can do this in \mathbb{R}^3 or \mathbb{R}^n ? Ben Harris and Greg Marks showed me that the answer is n+1. The vectors from the center of a regular simplex in \mathbb{R}^n to its n+1 vertices all have negative dot products. If n+2 vectors in \mathbb{R}^n had negative dot products, project them onto the plane orthogonal to the last one. Now you have n+1 vectors in \mathbb{R}^{n-1} with negative dot products. Keep going to 4 vectors in \mathbb{R}^2 : no way!
- **29** For a specific example, pick ${\bf v}=(1,2,-3)$ and then ${\bf w}=(-3,1,2)$. In this example $\cos\theta={\bf v\cdot w}/\|{\bf v}\|\|{\bf w}\|=-7/\sqrt{14}\sqrt{14}=-1/2$ and $\theta=120^\circ$. This always happens when x+y+z=0:

$$\mathbf{v} \cdot \mathbf{w} = xz + xy + yz = \frac{1}{2}(x + y + z)^2 - \frac{1}{2}(x^2 + y^2 + z^2)$$

This is the same as $\mathbf{v} \cdot \mathbf{w} = 0 - \frac{1}{2} \|\mathbf{v}\| \|\mathbf{w}\|$. Then $\cos \theta = \frac{1}{2}$.

30 Wikipedia gives this proof of geometric mean $G=\sqrt[3]{xyz} \le \text{arithmetic mean}$ A=(x+y+z)/3. First there is equality in case x=y=z. Otherwise A is somewhere between the three positive numbers, say for example z < A < y.

Use the known inequality $g \le a$ for the *two* positive numbers x and y+z-A. Their mean $a=\frac{1}{2}(x+y+z-A)$ is $\frac{1}{2}(3A-A)=$ same as A! So $a\ge g$ says that

 $A^3 \ge g^2 A = x(y+z-A)A$. But (y+z-A)A = (y-A)(A-z) + yz > yz. Substitute to find $A^3 > xyz = G^3$ as we wanted to prove. Not easy!

There are many proofs of $G=(x_1x_2\cdots x_n)^{1/n}\leq A=(x_1+x_2+\cdots +x_n)/n$. In calculus you are maximizing G on the plane $x_1+x_2+\cdots +x_n=n$. The maximum occurs when all x's are equal.

31 The columns of the 4 by 4 "Hadamard matrix" (times $\frac{1}{2}$) are perpendicular unit vectors:

32 The commands $V = \text{randn}(3,30); D = \text{sqrt}(\text{diag}(V'*V)); U = V \setminus D;$ will give 30 random unit vectors in the columns of U. Then u'*U is a row matrix of 30 dot products whose average absolute value may be close to $2/\pi$.

Problem Set 1.3, page 29

1 $2s_1 + 3s_2 + 4s_3 = (2, 5, 9)$. The same vector **b** comes from S times x = (2, 3, 4):

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} (\operatorname{row} 1) \cdot \boldsymbol{x} \\ (\operatorname{row} 2) \cdot \boldsymbol{x} \\ (\operatorname{row} 2) \cdot \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}.$$

2 The solutions are $y_1 = 1$, $y_2 = 0$, $y_3 = 0$ (right side = column 1) and $y_1 = 1$, $y_2 = 3$, $y_3 = 5$. That second example illustrates that the first n odd numbers add to n^2 .

The inverse of
$$S = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 is $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$: **independent** columns in A and S !

- 4 The combination $0w_1 + 0w_2 + 0w_3$ always gives the zero vector, but this problem looks for other *zero* combinations (then the vectors are *dependent*, they lie in a plane): $w_2 = (w_1 + w_3)/2$ so one combination that gives zero is $\frac{1}{2}w_1 w_2 + \frac{1}{2}w_3 = 0$.
- 5 The rows of the 3 by 3 matrix in Problem 4 must also be *dependent*: $r_2 = \frac{1}{2}(r_1 + r_3)$. The column and row combinations that produce 0 are the same: this is unusual. Two solutions to $y_1r_1 + y_2r_2 + y_3r_3 = 0$ are $(Y_1, Y_2, Y_3) = (1, -2, 1)$ and (2, -4, 2).
- **6** c = 3 $\begin{bmatrix} 1 & 1 & 0 \\ 3 & 2 & 1 \\ 7 & 4 & 3 \end{bmatrix}$ has column 3 = column 1 column 2
 - $c=-\mathbf{1}\begin{bmatrix}1&0&-\mathbf{1}\\1&1&0\\0&1&1\end{bmatrix} \text{ has column } 3=-\text{ column } 1+\text{column } 2$
 - $c = \mathbf{0}$ $\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix}$ has column 3 = 3 (column 1) column 2
- 7 All three rows are perpendicular to the solution x (the three equations $r_1 \cdot x = 0$ and $r_2 \cdot x = 0$ and $r_3 \cdot x = 0$ tell us this). Then the whole plane of the rows is perpendicular to x (the plane is also perpendicular to all multiples cx).

9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to Cx = 0:

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 when $\mathbf{x} = \begin{bmatrix} c \\ c \\ c \\ c \end{bmatrix} =$ any constant vector.

- 11 The forward differences of the squares are $(t+1)^2 t^2 = t^2 + 2t + 1 t^2 = 2t + 1$. Differences of the nth power are $(t+1)^n t^n = t^n t^n + nt^{n-1} + \cdots$. The leading term is the derivative nt^{n-1} . The binomial theorem gives all the terms of $(t+1)^n$.
- **12** Centered difference matrices of *even size* seem to be invertible. Look at eqns. 1 and 4:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \text{ First } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ -x_3 = b_4 \end{bmatrix} = \begin{bmatrix} -b_2 - b_4 \\ b_1 \\ -b_4 \\ b_1 + b_3 \end{bmatrix}$$

13 Odd size: The five centered difference equations lead to $b_1 + b_3 + b_5 = 0$.

$$x_2 = b_1$$
 $x_3 - x_1 = b_2$
Add equations $1, 3, 5$
 $x_4 - x_2 = b_3$
 $x_5 - x_3 = b_4$
 $-x_4 = b_5$
The left side of the sum is zero

The right side is $b_1 + b_3 + b_5$

There cannot be a solution unless $b_1 + b_3 + b_5 = 0$.

14 An example is (a,b) = (3,6) and (c,d) = (1,2). We are given that the ratios a/c and b/d are equal. Then ad = bc. Then (when you divide by bd) the ratios a/b and c/d must also be equal!