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Solutions to Exercises

The combinations give (a) alineRR® (b) aplaneinR® (c) all of R3.

v+ w = (2,3) andv — w = (6, —1) will be the diagonals of the parallelogram with

v andw as two sides going out froif, 0).

This problem gives the diagonats+ w andv — w of the parallelogram and asks for

the sides: The opposite of Problem 2. In this exampie (3, 3) andw = (2, —2).
3v+ w = (7,5) andcv + dw = (2¢ + d, c + 2d).

u+v = (-2,3,1) andu+v+w = (0,0,0) and2u+2v+w = ( add first answeps=
(—2,3,1). The vectorsu, v, w are in the same plane because a combination gives

(0,0,0). Stated another ways = —v — w is in the plane ob andw.

The components of everyw + dw add to zero because the components ahd ofw
addto zeroc = 3 andd = 9 give(3, 3, —6). There is no solution tev+dw = (3, 3, 6)
because& + 3 + 6 is not zero.

The nine combination&(2, 1) + d(0, 1) with ¢ = 0,1,2 andd = (0,1, 2) will lie on a

lattice. If we took all whole numbeksandd, the lattice would lie over the whole plane.
The other diagonal is — w (or elsew — v). Adding diagonals give2v (or 2w).
The fourth corner can bl, 4) or (4,0) or (-2, 2). Three possible parallelograms!

i —j = (1,1,0) is in the basex-y plane).: + 7 + k = (1,1, 1) is the opposite corner

from (0,0,0). Points inthe cube hawe< 2 < 1,0 <y <1,0< 2z < 1.

Four more corner$l,1,0), (1,0,1),(0,1,1),(1,1,1). The center point i§
7%7 (

1),(1,4,3) and(3,0,3),

Centers of faces arg, £,0), (3, ,1) and(0 , %

’ 5
The combinations of = (1,0,0) andi + j = (1, 1, 0) fill the xy plane inzyz space.
Sum= zero vector. Sum= —2:00 vector= 8:00 vector. 2:00 is 30° from horizontal

= (cos Z,sin Z) = (v/3/2,1/2).

Moving the origin to6:00 addsj = (0, 1) to every vector. So the sum of twelve vectors

changes fron® to 125 = (0, 12).
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The pothv + i is three-fourths of the way te starting fromw. The vector

4
parallelogram).

1 1 . 1 1 .
—v+ i is halfway tou = 7Y + W The vectow + w is 2u (the far corner of the

All combinations withc + d = 1 are on the line that passes throughand w.

The pointV = —wv + 2w is on that line but it is beyoneb.

Al vectors cv + cw are on the line passing through, 0) andu = v + 1w. That
line continues out beyond + w and back beyon¢D, 0). With ¢ > 0, half of this line

is removed, leaving ey that starts af0, 0).

The combinationsv + dw with 0 < ¢ < 1 and0 < d < 1 fill the parallelogramwith
sidesv andw. For example, ifv = (1,0) andw = (0, 1) thencv + dw fills the unit
square. But whem = (a,0) andw = (b, 0) these combinations only fill a segment of

aline.

With ¢ > 0 andd > 0 we get the infinite “cone” or “wedge” betweanandw. For
example, ifv = (1,0) andw = (0, 1), then the cone is the whole quadrant 0, y >

0. Question What if w = —v? The cone opens to a half-space. But the combinations
of v = (1,0) andw = (—1,0) only fill aline.

(@) u + 1v + 1w is the center of the triangle betweanv andw; u + 1w lies
betweernu andw (b) Tofillthe triangle keep>0,d>0,e>0,andc+d+e = 1.
The sum ifv —u) + (w —v) + (u —w) = zero vector. Those three sides of a triangle
are in the same plane!

The vector} (u + v + w) is outsidethe pyramid because+ d+e =1+ 1 + 1 > 1.

All vectors are combinations ef, v, w as drawn (not in the same plane). Start by
seeing thatu + du fills a plane, then addinguw fills all of R3.

The combinations ofs andw fill one plane. The combinations efandw fill another

plane. Those planes meet itirge: only the vectorgv are in both planes.

() For aline, choose = v = w = any nonzero vector (b) For a plane, choose

u andw in different directions. A combination likes = u + v is in the same plane.
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Solutions to Exercises

Two equations come from the two components+ 3d = 14 and2c¢ + d = 8. The

solutionisc = 2 andd = 4. Then2(1,2) + 4(3,1) = (14, 8).

A four-dimensional cube ha&* = 16 corners an® - 4 = 8 three-dimensional faces

and24 two-dimensional faces arg® edges in Worked Examplz4 A.

There ares unknown numbers,, vo, v3, w1, wo, w3. The Six equations come from the
components ob + w = (4,5,6) andv — w = (2,5,8). Add to find2v = (6, 10, 14)
sov = (3,5,7) andw = (1,0, —1).

Two combinations out of infinitely many that prodube= (0,1) are —2u + v and
1w — fv. No, three vectoras, v, w in the z-y plane could fail to producé if all
three lie on a line that does not contéinYes if one combination producdsthen two
(and infinitely many) combinations will produde This is true even ifu = 0; the

combinations can have differesi:.

The combinations of andw fill the planeunlessy andw lie on the same line through
(0,0). Four vectors whose combinations fildimensional space: one example is the

“standard basis(1, 0, 0, 0), (0,1, 0,0), (0,0, 1,0), and(0, 0,0, 1).

The equationsu + dv + ew = b are

2¢ —d =1 Sod = 2e c=3/4

—c+2d —e=0 thenc = 3e d=2/4

—d+2e=0 thende =1 e=1/4
u-v=-24424=0uv-w=—-6+16=1Lu-(v+w)=u-v+u-w=

0+l,w-v=4—-6=-2=v-w.

|u|| = 1 and||v| = 5 and|jw]|| = V5. Then|u - v| = 0 < (1)(5) and|v - w| = 10 <
5v/5, confirming the Schwarz inequality.
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Unit vectorsv/|lv|| = (2,2) = (0.8,0.6). The vectorsw, (2,—1), and—w make
0°,90°,180° angles withw andw/||w|| = (1/v/5,2/+/5). The cosine of is . -
w o _

oy = 10/5V5.

@uv-(—v)=-1 b v+w)-v-—w)=v-v+wVv—Vv-W-—W-W=

1+( )—( )—1=0s060=90° (noticev-w = w-v) (©) (v—2w)-(v+2w) =
vev—4dw-w=1—-—4=-3.

uy; = v/|jv|| = (1,3)/V10 anduy = w/|w| = (2,1,2)/3. U, = (3,-1)//10 is
perpendicular tas; (and so is(—3,1)/4/10). U, could be(1, —2,0)/v/5: There is a
whole plane of vectors perpendiculardg, and a whole circle of unit vectors in that
plane.

All vectorsw = (¢, 2¢) are perpendicular te. They lie on a line. All vectorsz, y, z)
with  + y + z = 0 lie on aplane All vectors perpendicular t61,1,1) and(1, 2, 3)
lie on aline in 3-dimensional space.

(@) cosf = v - w/||v|||lw| = 1/(2)(1) sof = 60° or 7/3 radians  (b)cosf =
0sof = 90° or w/2 radians (C)cos® = 2/(2)(2) = 1/2s06 = 60° or /3
(d) cos = —1/+/2 506 = 135° or 37 /4.

() False:v andw are any vectors in the plane perpendiculauto (b) True: u -
(v+2w)=u-v+2u-w=0 (c) True,|u—v|? = (u—v)-(u—v)splitsinto
u-u+v-v=2whenu-v=v-u=0.

If vows /v1w; = —1thenvaws = —vywy Orvywy +vewe = v-w = 0: perpendicular!
The vectorg1, 4) and(1, —1) are perpendicular.

Slopes2/1 and—1/2 multiply to give —1: thenwv - w = 0 and the vectors (the direc-

tions) are perpendicular.

v - w < 0 means angle- 90°; thesew'’s fill half of 3-dimensional space.

(1,1) perpendicular t@1,5) — c¢(1,1) if (1,1)-(1,5) —¢(1,1)-(1,1) =6 —2c=0o0r
c=3;v-(w—cv)=0if c=v-w/v-v. Subtractingv is the key to constructing

a perpendicular vector.



13

14

15

16

17

18

19

20

21

22

23

Solutions to Exercises

The plane perpendicular 1@, 0, 1) contains all vectorsc, d, —c). In that planepy =
(1,0,—1) andw = (0,1, 0) are perpendicular.

One possibility among manwyt = (1, -1,0,0),v = (0,0,1,—1),w = (1,1,-1,—-1)
and(1,1,1,1) are perpendicular to each other. “We can rotate thase w in their
3D hyperplane and they will stay perpendicular.”

Lz +y)=(2+8)/2=>5and5 > 4; cos§ = 2¢/16/1/10v/10 = 8/10.
[v|?=1+1+---+1=9s0|lv| =3;u=v/3=(3,...,1)isaunitvectorirdD;
w = (1,—1,0,...,0)//2is a unit vector in th&D hyperplane perpendicular o
cosa = 1/v/2, cosp = 0, cosy = —1/4/2. For any vectow = (vy,vs,vs) the
cosines with{1, 0, 0) and(0, 0, 1) arecos? a+cos? B+cos? y= (vi+v3+v3)/||v[?= 1.
|v||* = 4% + 22 = 20 and |w||?> = (—1)? + 22 = 5. Pythagoras i§(3,4)||? = 25 =
20 + 5 for the length of the hypotenuse+ w = (3,4).

Start from the rule$1), (2), (3) forv - w = w - v andu - (v + w) and(cv) - w. Use
rule (2) for (v + w) - (v+w) = (v +w) - v+ (v + w) - w. Byrule(1) thisis
v.(v+w)+w-(v+w). Rule(2) againgivex -v+v-w+w-v+w- -w =
v.v+2v-w+ w-w. Noticev - w = w - v! The main point is to feel free to open

up parentheses.

We know thatv — w) « (v —w) = v-v—2v-w+w - w. The Law of Cosines writes
|v|l|lw]| cos @ for v - w. Hered is the angle between andw. Whenf < 90° this

v - w is positive, so in this case - v + w - w is larger thar|v — w||?.

Pythagoras changes from equalifys-b? = ¢? toinequalitywhend < 90° or6 > 90 °.
2v-w < 2||v||||w|| leads t|v +w|]? = v-v+2v-w+w-w < ||v]|? +2|v|||Jw] +
|lwl||?. Thisis(||v|| + ||w]|)?. Taking square roots givél® + w| < ||v| + ||w]|.
viw? + 2uiwivws + vaws < viw? + viw3 + viw? + vaws is true (cancel terms)
because the differenceigw? + vaw? — 2v;w;vawy Which is (vywy — vawy)? > 0.
cos B = w1 /||w] andsin 8 = wy/||w||. Thencos(f—a) = cos § cos a+sin fsina =

viwy /||v]|[|w] + vews/||v]|||Jw] = v - w/||v]||||w]|. Thisiscos # becaused — a = 6.
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Example 6 givesu,||U;| < 3(u} + U?) and|us||Us| < §(u3 + UZ). The whole line

1
2
becomes96 < (.6)(.8) + (.8)(.6) < 3(.6% +.8%) + +(.8% +.6%) = 1. True:.96 < 1.
The cosine ofl is z/+/x2 + y2, near side over hypotenuse. ThHens 0|2 is not greater
than 1:2% /(2% + y?) < 1.

The vectoraw = (z,y) with (1,2) - w = x + 2y = 5 lie on aline in thery plane. The
shortestw on that line is(1, 2). (The Schwarz inequalitifw|| > v - w/||v|| = V5 is
an equality wheros § = 0 andw = (1,2) and||w|| = v/5.)

The length||v — w|| is betweerR and8 (triangle inequality whetfjv|| = 5 and||w|| =

3). The dot producw - w is between-15 and15 by the Schwarz inequality.

Three vectors in the plane could make angles greater 9hanwith each other: for
example(1,0),(—1,4),(—1,—4). Four vectors couldhot do this §60° total angle).
How many can do this ilR? or R"? Ben Harris and Greg Marks showed me that the
answer isn 4+ 1. The vectors from the center of a regular simpleXifi to itsn + 1
vertices all have negative dot productsn 2 vectors inR™ had negative dot products,
project them onto the plane orthogonal to the last one. Nawhaven + 1 vectors in

R"~! with negative dot products. Keep going to 4 vectorRih: no way!

For a specific example, pick = (1,2, —3) and therw = (-3, 1, 2). In this example
cosh = v - w/|v|||w|]| = =7/V14V/14 = —1/2 andf = 120° . This always
happens whem + y + z = 0:

1 1
v.w:xz+xy—|—yz:§(x+y+z)2_§(x2+y2+22)

L 1 1
This is the sameas- w =0 — 3 [lv|l||w]]. Then cos = 7

Wikipedia gives this proof of geometric mead = @zyz < arithmetic mean
A = (x 4+ y + 2)/3. First there is equality in case = y = z. OtherwiseA is

somewhere between the three positive numbers, say for dgamp A < y.

Use the known inequality < « for thetwo positive numbers andy + z — A. Their

meana = i(z +y+ 2z — A)is 1(34 — A) = same asd! Soa > g says that
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A3 > g?A=a2(y+z2—A)A But(y+z—A)A = (y— A)(A—2) +yz > yz.
Substitute to findd?® > xyz = G as we wanted to prove. Not easy!
There are many proofs & = (zyz5 - - ~xn)1/” <A=(r14+z24+ - +x,)/n In
calculus you are maximizing on the plane:; + x5 + - - - + z,, = n. The maximum
occurs when alk’s are equal.

31 The columns of the 4 by 4 “Hadamard matrix” (time$ are perpendicular unit

vectors:

1 -1 -1 1

32 The command¥ = randn (3,30); D = sqrt (diag (V' % V)); U = V\D; will give
30 random unit vectors in the columns@f Thenu’ x U is a row matrix of 30 dot

products whose average absolute value may be clasérto

1 281 + 382 + 4s3 = (2,5,9). The same vectds comes fromS timesz = (2, 3,4):

1 0 0f |2 (rowl) -z 2
1 1 0f([3]=|(row2)-xz| = |5
1 1 1| |4 (row2) -« 9

2 The solutions arg; = 1, y» = 0, y3 = 0 (right side= columnl) andy; = 1, y» = 3,
y3 = 5. That second example illustrates that the firstdd numbers add to?.

Bl ]. 0 0 B1

1 = B Y1
3yt = B, QiVes vy, = —B; +B, =|-1 1 0| |Bs
y1+y2+ys = Bs ys = —By +Bs 0 —1 1| |Bs
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100 1 00
Theinverseof=|1 1 0|isA=|-1 1 0/:independentcolumnsind ands!

111 0-1 1

4 The combinatiordw, + 0wy + 0wz always gives the zero vector, but this problem
looks for otherzerocombinations (then the vectors atependentthey lie in a plane):

wsy = (w; + w3)/2 so one combination that gives zerogwl —wy + %’LUg =0.

5 The rows of the3 by 3 matrix in Problem 4 must also lependentr, = 1 (ry + r3).
The column and row combinations that prodcare the same: this is unusual. Two

solutions tay; 71 + yare +y3r3 =0 are(Yl, Yo, Yg) = (1, -2, 1) and(2, —4, 2)

1 1 0
6 c=3 3 2 1| hascolumr8 = columnl — column2

7 4 3
(1 0-1

c=-—1 1 1 0] hascolum8 = — columnl + column2
0 1 1
0 0 O

c=0 2 1 5| hascolummB =3 (columnl) — column2
3 3 6

7 All three rows are perpendicular to the solutwr{the three equations; - x = 0 and
ro-x = 0 andrs-x = 0 tell us this). Then the whole plane of the rows is perpendicul

to x (the plane is also perpendicular to all multiptas.

©1—0 =b  a =0 10 0 o] [or]
To—T1 = b To = b1 +b 1 1 0 Of |b
g 271 2 2 1+bo _ 21 _ 41p
T3 — Ty = b3 3 = by + by + b3 1 1 1 0 bs
Ty — 23 = by Ty = b1+ by + b3+ by _1 1 1 1_ _b4_
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9 The cyclic difference matriX’' has a line of solutions (it dimensions) t@C'x = 0:

1 0 0 —1] [x] o] ]
-1 1 0 0 To 0 c
= whenx = = any constant vector.

0 -1 1 0 T3 0 c
i 0 0 -1 1_ | Z4 | _O_ L ¢

zZ9 — 21 = bl z1 = —b1 — b2 — bg -1 -1 -1 b1

10 23— 29 = by 29 = —by—bg = 0 -1 -1 by | = A~1b
0— zZ3 = bg zZ3 = - bg 0 0 —1 b3

11 The forward differences of the squares ére- 1)? — 2 =t + 2t + 1 — t2 = 2t + 1.
Differences of theith power argt + 1) — t" = " —t" + nt"~! +.... The leading

term is the derivative:t" 1. The binomial theorem gives all the terms(of+ 1)".

12 Centered difference matrices@fen sizeseem to be invertible. Look at egrisand4:
[ 0 1 0 0_ _xl_ _bl_ First -xl | _—bQ — b4_
-1 0 1 0 X9 by solve X9 by
0 -1 0 1 I3 b3 T = b1 T3 —b4
L 0 0 -1 0_ _x4_ _b4_ —T3 = b4 _$4 ] b1 + b3_

13 Odd size The five centered difference equations leathtg- b3 + b5 = 0.

2 =b
Add equationd, 3,5

r3 —T1 = b2

The left side of the sum is zero
Ty — T = b3

The right side i$, + bs + bs
Ty — T3 = b4

There cannot be a solution unlégs+ b3 + b5 = 0.

— Ty = b5

14 An example iSa,b) = (3,6) and(c, d) = (1,2). We are given that the ratieg/c and
b/d are equal. Themad = bc. Then (when you divide byd) the ratiosa/b andc¢/d

must also be equal!





